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Abstract 

The work presents advances in the implementation of an 
ultrasound based silent speech interface system. Use of a 
portable acquisition device, a visual speech recognizer system 
with a language model, and real time tests with the Julius 
system are described. Experiments with two types of visual 
feature extraction are also presented. Results show that good 
recognition and real time performance can be obtained with a 
portable silent speech interface employing a language model. 

Index Terms: silent speech interface, visual speech 
recognition, vocal tract imaging, ultrasound imaging 

1. Introduction 

A silent speech interface (SSI) is intended to enable speech 
communication in the absence of an intelligible acoustic signal 
[1]. Several experimental SSI systems have been developed 

using a variety of different sensors [1]. The REVOIX project 
at the Sigma Laboratory in Paris is building an SSI meant to 
restore the voices of speech-impaired individuals in real-time. 
The technique chosen for REVOIX is to drive a recognizer-
synthesizer system using ultrasound and video images of the 
tongue and lips. The REVOIX SSI thus consists of three 
modules operating sequentially: (1) an acquisition module to 
record simultaneous ultrasound and visual images of the vocal 

tract; (2) a word-level visual speech recognizer that uses 
Hidden Markov Models trained on features extracted from 
these images (HTK toolkit [7]), rather than from acoustic 
features; and (3) a speech synthesizer. To be genuinely useful, 
such a device will ultimately have to be lightweight, have 
good recognition and synthesis performance, and operate in 
real time. 

In this report, we build upon the groundwork laid in earlier 

research [2-6] by: 

 Introducing a new, portable acquisition system; 

 Comparing different types of visual feature 

extraction; 

 Introducing the use of a language model to improve 

the recognition accuracy;  

 Experimenting with a real time implementation of 

the recognition using the Julius system. 
Our results show that it is possible to obtain good recognition 
and real time performance using a portable SSI system 

employing a language model. 
The visual speech acquisition system and the acquired 

corpora are described in Section 2 and 3. In Section 4, two 
visual speech feature extraction techniques, namely the 
EigenTongues/EigenLips and the Discrete Cosine Transform 
(DCT), are presented. The experimental results are given in 
Section 5. Conclusions are drawn in Section 6.  

2. Visual Speech Data Acquisition  

The multimodal speech data acquisition system is shown in 
Figure 1. It is comprised of a lightweight, adjustable helmet 
(Figure 1(a)) housing an 8MC4 microconvex ultrasound probe 
(opening angle: 140°, frequency range: 4-8 MHz) for tongue 
imaging; a CMOS industrial camera for imaging the lips; and 
a lapel microphone for audio recording if desired (Figure 1(b)) 

(the audio signals are not used in the REVOIX SSI). An 
infrared illumination and an infrared filter are affixed to the 
camera to make video acquisition independent of ambient 
lighting conditions.  

       

(a)                                  (b) 

Figure 1: Lightweight helmet, with ultrasound probe, 
infrared camera, and lapel microphone. 

The ultrasound system used is the lightweight t3000™ 
from Terason. The ultrasound and video imaging devices are 
controlled by a stand-alone, easy to operate, dedicated 
graphical software interface called Ultraspeech [9]. 
Ultraspeech uses a multithread programming technique to 

allow synchronous acquisition of the two image streams at 
their respective maximum frame rates, along with an audio 
signal. At an ultrasound focal distance of 7 cm, appropriate for 
tongue visualization, the system records, simultaneously and 
synchronously, the ultrasound stream at 60 fps (image 
resolution of 320×240 pixels), the video stream at 60 fps 
(image resolution of 640×480 pixels), and the audio signal (16 
KHz, 16 bits). A typical pair of synchronous ultrasound and 

video images of the tongue and lips is shown in Figures 2(a-b). 
Because a large amount of memory is need for buffering the 
acquired image streams, the maximal duration of a recorded 
utterance is limited to 8s by Ultraspeech. In REVOIX, an 
ordinary laptop PC is used to run the software, and the entire 
SSI system can be fit into a small carrying case. 

An acquisition protocol was developed for recording the 
visual speech data. The training corpus was organized into 

lists of 50 sentences. To avoid speaker fatigue, the acquisition 
was split into several sessions separated by intervals of at least 
24 hours. Within each session, several lists were recorded. 
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After each list, the subject takes a short break, without 
removing the helmet, and drink water with a straw to hydrate 
the mouth. After every two lists, the calibration of tongue and 
lips images is checked, and if necessary, the sensors be 
adjusted. Additional ultrasound gel is also placed on the 

surface of the ultrasound probe after every two lists to 
maintain good ultrasound imaging quality.  

  

(a)                                         (b) 

Figure 2: Ultrasound tongue, and infrared lip images 

Since the visual speech features are extracted from the 
ultrasound and video images, maintaining the positioning 
consistency of the ultrasound probe and video camera across 
all training sessions is critical to the performance of the SSI. 
Recording a large amount of multimodal speech data for 
training the recognition models requires multiple sessions 
spaced in time, thus necessitating an inter-session re-
calibration mechanism to maintain fixed positions of the 

sensors used, and possible readjustment between sessions. The 
Ultraspeech graphical user interface includes a module which 
allows the user to interactively re-calibrate ultrasound and 
video images before data acquisition to maintain positioning 
consistency, as described in [5,6]. During re-calibration, the 
subject can thus adjust the positions of the ultrasound probe 
and video camera to match the current images to pre-recorded 
target reference images. In this way, the positioning 

consistency of the sensors can be maintained. 

3. Visual Speech Corpora 

Data acquisition for the visual speech recognizer in the 
REVOIX project remains a time and labor-intensive task. The 
results presented here are for a single speaker. The TIMIT [10] 

text was used for constructing the training. All 2342 sentences 
of the TIMIT text were uttered once by a male native English 
speaker (Speaker BD), silently and in the non-verbalized 
punctuation (NVP) manner. During the utterances, visual 
speech data were recorded using the system described in 
Section 2. This recorded visual speech corpus, which we shall 
call the Visual TIMIT training corpus, is suitable for training 
the English phone models since the TIMIT text set is 
phonetically balanced. 

Two additional corpora were constructed for our 
performance evaluation. The first was built by using a subset 
of WSJ0 5,000-word test set [11]. One hundred short 
sentences were selected from the 330 WSJ0 5,000-word test 
sentences, and read by the Speaker BD in the same way as that 
for recording the Visual TIMIT corpus. Hereafter we refer to 
this test set as the Visual WSJ0 5k test corpus. The second 
one, which we shall call the Visual Gigaword 20k test corpus, 

consists of 200 sentences extracted in late February 2011 from 
the four English newswire sources used in the English 
Gigaword corpus [12]. The sentences were selected such that 
the words contained in them are included in the English 
Gigaword 20k vocabulary. The texts of these two test corpora 
can be consulted at [13].  

4. Visual Speech Feature Extraction 

Two different visual feature extraction techniques were 

implemented and compared, as described below. 

4.1. EigenTongues/EigenLips Approaches 

The “EigenTongues” and “EigenLips”approaches [14] 
were first used to extract visual speech features from both the 
ultrasound and video images. In the “EigenTongues” 
technique, each ultrasound image is projected onto the feature 
space of “EigenTongues”, which can be seen as the space of 
standard vocal tract configurations obtained after a Principal 
Components Analysis (PCA) using a set of 500 randomly 
selected frames. The “EigenLips” decomposition was used to 

encode video images of the lips. Before performing these 
decompositions, ultrasound and video regions of interest were 
first resized to 64×64 pixels. The numbers of projections onto 
the sets of EigenTongues and EigenLips used for coding were 
determined by keeping the eigenvectors carrying at least 80% 
of the variance of the training set. In this work, 30 coefficients 
for each of the two streams were extracted for representing 
each combined video frame. Specifically, denote the 

EigenTongues as a pT×kT matrix VT , where pT is the number of 
dimensions of each eigenvector, kT (=30) is the number of 
eigenvectors for projection. A resized tongue image Tn can be 
decomposed as: 

                    (1) 

where FTn is the kT -dimensional score vector of this image 
frame determined by PCA; µT is the pT -dimensional mean 
vector; and εTn is the PCA decomposition deviation vector of 
Tn. Similarly, for a resized video image Ln of lips, the PCA 

decomposition can be expressed as: 
                    (2) 

Using a “feature fusion strategy”, the PCA scores of tongue 
and lips images were concatenated into a single vector, along 
with their first and second derivatives, resulting in visual 
speech feature vectors with 180 components.  

4.2. DCT-based Approach 

The discrete cosine transform (DCT) is a technique widely 
used for lossy image compression. DCT provides a 
representation of the frequency content of the transformed 
image. It has a strong “energy compaction” property: most of 
the signal information tends to be concentrated in a few low-

frequency components of the DCT [15]. Based on the 
assumption that the most relevant information in the tongue 
and lips images is carried by components with low spatial 
frequencies, the DCT technique can be adopted to extract 
visual speech features. This was the second technique we used. 

As an example, for a resized tongue image represented by 
a matrix A of size M×M, the two-dimensional DCT is 

computed as:   
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To be consistent to the EigenTongues/EigenLips feature 
extraction in terms of the feature vector dimension, the 30 

lowest frequency components were extracted from the DCT of 
a tongue image to form the tongue DCT vector. Similarly, 

tongue surface 
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another 30-dimensional vector was extracted from the DCT of 
the corresponding lip image. These two vectors were then 
concatenated, along with their first and second derivatives, 
resulting in DCT feature vectors again of 180 components.   

5. Experimental Results and Analyses 

5.1. Continuous Visual Speech Recognition on PCA 

Features 

The HTK 3.4 toolkit was used to train the visual speech 
HMM models on the PCA features of the Visual TIMIT 
training corpus. These HMMs were built in the form of cross-
word triphones in order to capture the coarticulatory effects 
both within words and across words in the continuous visual 
speech. An empirical study was conducted to vary the number 

of Gaussians in each GMM from 2 to 16. An 8-Gaussian 
GMM for each HMM state was found accurate enough to 
model cross-word triphones in this research. 

Continuous visual speech recognition was carried out on 
the two test sets by using HTK 3.4. For recognizing the Visual 
WSJ0 5k test set, since no suitable trigram model was 
available, only the WSJ0 5k NVP bigram [11] language model 
was used. For the recognition on the Visual Gigaword 20k test 

set, however, a Gigaword 20k trigram model was also used. 
The recognition accuracies were evaluated on both the word-
level and phone-level. The results are shown in Table 1. As a 
simple word-loop bigram model was employed in earlier SSI 
work [6], it was again included here in order to extend the 
comparison of different language models, and to illustrate the 
impact of an appropriate language model on recognition 
performance for our application. 

Table 1. Recognition accuracy on the two test sets, 

using PCA features and different bigram LMs. 

Test Set +  
Language Model 

Recognition Accuracy (%) 

Word Level Phone Level 

Visual WSJ0 5k + 
WSJ0 5k NVP bigram 

79.08 90.21 

Visual WSJ0 5k + 
Word-loop bigram 

43.50 77.87 

Visual Gigaword 20k + 
Gigaword 20k bigram 

69.05 86.54 

Visual Gigaword 20k + 
Gigaword 20k trigram 

77.53 89.82 

Visual Gigaword 20k + 
Word-loop bigram 

12.06 70.72 

 
It is observed that, with word-loop bigram models, the 

accuracy was much lower, on both test sets, than that obtained 
using task specific bigrams or trigrams, which impose a strong 
domain-specific constraint on the search space. The 

explanation for this is that the probability distributions of 
words and word strings in the word-loop bigram model are 
quite different from those in the test set. As an example, two 
test sentences from our two test sets are shown in Tables 2 and 
3, where the word-level outputs relevant to different bigram 
models are shown. One may remark that some non-
grammatical word strings, such as “two be peers” and “wee 
half tear”, have occurred in the recognition results from the 

word-loop bigrams. The word-loop bigram performance on 
Visual Gigaword 20k is even further reduced compared to 
WSJ0 5k because the 4-fold increase in vocabulary greatly 
expands the number of possible incorrect word choices. 

Though the word level recognition accuracy on both test 
sets was less than 80%, on the phone level, the accuracy was 

higher. This demonstrates that visual speech data can be well 
represented by PCA features, and that using tied-state cross-
word triphone HMMs and a bigram model does allow visual 
speech to be well decoded at the phone-level.  

Table 2. Word recognition output and original transcript of a 
visual speech utterance in Visual WSJ0 5k test corpus. 

Original Text 
we’re going to be bidders said a 
top official of a major oil 

company 

Recognized 
Text 

WSJ0 5k 

NVP 

bigrams 

we’re going to be peers said top 
official of a much oil company 

Word-

loop 

bigrams 

we’ll going two be peers san 
top official of up h. up oil 
company 

Table 3. Word recognition output and original transcript of a 
visual speech utterance in Visual Gigaword 20k test corpus. 

Original Text 
now we have the earthquake 
which is going to knock the 
numbers around a bit 

Recognized 
Text 

Gigaword 

20k 

bigrams 

now we have the earthquake 
which is going to knock 
numbers around a pin 

Gigaword 

20k 

trigram 

now we have the earthquake 
which is going to knock 
numbers around a bit 

Word-

loop 

bigrams 

now wee half tear earthquake 
witch is going tune knocked 
numbers around up inn 

 
From Table 2, it can also be seen that even when the 

domain-specific WSJ0 5k NVP bigram model was used, 
“bidders” was misrecognized as “peers”, and “major” as 

“much”. A reasonable explanation for this is that since no 
information about the larynx height and the tongue tip position 
can be acquired in the ultrasound and video images, the vocal 
tract configuration of phones such as “d” and “jh”, whose 
pronunciations rely heavily on the movement of larynx and/or 
tongue tip, is not well represented by the visual speech data. 

5.2. Continuous Visual Speech Recognition on DCT 

Features 

DCT-based features were also used to perform the visual 
speech recognition on the two test corpora. The HMM models 
had the same structure and same complexity as those in 
Section 5.1, but were trained by using the DCT features of the 

Visual TIMIT training corpus. This recognition was also 
performed by using HTK 3.4. Results are presented in Table 4. 

Table 4. Recognition accuracy by using DCT features 
on the Visual WSJ0 5k test set. 

Test Set +  
Language Model 

Recognition Accuracy (%) 

Word Level Phone Level 

Visual WSJ0 5k + 
WSJ0 5k NVP bigram 

84.16 93.44 

Visual Gigaword 20k + 

Gigaword 20k bigram 
76.91 90.22 

Visual Gigaword 20k + 
Gigaword 20k trigram 

86.07 93.81 

 
It can be seen that, for each test set, using the same 

language model, a significant increase (about 5%) of the 
recognition accuracy was introduced by using DCT features. 
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This indicates that for the visual speech recognition in the 
current portable REVOIX SSI setup, the DCT-based feature 
extraction technique performs better than the PCA-based 
technique in terms of recognition accuracy.  

5.3. Real Time Factor of the Recognition using HTK 

It was found in our experiments that by using DCT 

features, the recognition system also ran faster than the system 
using PCA features. In Table 5, the real-time factors of the 
recognition using PCA-based features are compared with those 
of the recognition using DCT-based features. As the HMM 
model complexity was the same for both types of features, it is 
hypothesized that the DCT features, being somewhat 
“sharper”, led to a more compact set of paths in the Viterbi 
search procedure. The faster execution of the trigram 
compared to bigram is believed to be due to the trigram 

constraint being applied over a longer window, again limiting 
the search space. 

Table 5. Real-time factor for recognition on the test sets, 
using HTK 3.4. vs. using Julius 4.1.5 

Test Set +  
Language Model 

Real-time Factor 
(CPU Time/Audio Time) 

PCA-based DCT-based 

HTK 3.4 

Visual WSJ0 5k + 
WSJ0 5k NVP bigram 

3.61 0.56 

Visual Gigaword 20k + 
Gigaword 20k bigram 

26.22 3.56 

Visual Gigaword 20k + 
Gigaword 20k trigram 

7.96 1.93 

Julius 4.1.5 

Visual WSJ0 5k + 
WSJ0 5k NVP bigram 

0.46 0.42 

Visual Gigaword 20k + 
Gigaword 20k bigram 

0.66 0.59 

Visual Gigaword 20k + 
Gigaword 20k trigram 

0.65 0.58 

5.4. Continuous Visual Speech Recognition Using 

Julius  

To improve the real-time performance of our recognizer, 
the Julius 4.1.5 system was also used to perform the 
recognition on the test sets. The triphone HMM models based 
on PCA features and DCT features were employed directly in 

the recognition experiments using Julius. The recognition 
accuracy was similar to that derived by using HTK 3.4, 
however, with a real-time factor less than one. The real-time 
factors for recognition on both test sets are also listed in Table 
5. The difference between bigram and trigram speeds observed 
with HTK is not present here due to the 2 pass search method 
used in Julius.  

6. Conclusions and Discussions 

Our results show that, for the speaker tested here, ultrasound 
and video streams of the tongue and lips recorded during 
speech production can effectively be used to drive a 
continuous visual speech recognizer. The EigenTongues/ 
EigenLips and DCT-based approaches appear to be 

appropriate for constructing visual speech features with high 
precision. With the current REVOIX setup, the DCT-based 
approach performed better than EigenTongues/ EigenLips in 
both recognition accuracy and real-time performance. A set of 
tied-state cross-word triphone HMMs can be trained on the 

visual speech corpus, and by using the HMMs and a well-
defined domain-specific bigram or trigram model, high 
recognition accuracy can be achieved, both at phone-level and 
word-level.  

These results imply that the recognized text could be used 

as input to a subsequent speech synthesizer in an SSI to 
generate intelligible speech. By implementing the visual 
speech recognizer in the Julius system, word-level recognition 
can be performed in nearly real-time, with only a small loss in 
recognition accuracy.  
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